In this article we will explore the impact of 7-Hydroxymitragynine on different aspects of everyday life. From its influence on the economy to its relevance in the cultural sphere, 7-Hydroxymitragynine has left a significant mark on contemporary society. Through in-depth analysis, we will examine how 7-Hydroxymitragynine has shaped social dynamics and created new opportunities and challenges. Since its emergence, 7-Hydroxymitragynine has sparked great interest and generated passionate debates, making it crucial to understand its importance and significance in today's world. Through a holistic view, this article seeks to shed light on the various facets of 7-Hydroxymitragynine and its influence on different spheres of human life.
7-Hydroxymitragynine, like mitragynine, appears to be a mixed opioid receptor agonist/antagonist, acting as a partial agonist at μ-opioid receptors and as a competitive antagonist at δ- and κ-opioid receptors.[6][7] Evidence suggests that 7-OH is more potent than both mitragynine and morphine. 7-OH does not activate the β-arrestin pathway like traditional opioids, meaning symptoms such as respiratory depression, constipation and sedation are much less pronounced.[6]
7-OH is generated from mitragynine in vivo by hepatic metabolism and may account for a significant portion of the effects traditionally associated with mitragynine. Although 7-OH occurs naturally in kratom leaves, it does so in such low amounts that any ingested 7-OH is inconsequential compared to the 7-OH generated in the body.[6]
Metabolism
7-Hydroxymitragynine can convert into mitragynine up to 45% in human liver microsomes over a 2 hour incubation and was degraded up to 27% in simulated gastric fluid and degraded up to 6% in simulated intestinal fluid.[8] 7-Hydroxymitragynine can metabolize to mitragynine pseudoindoxyl in the blood but not in the liver.[9][10] Interestingly, this even more potent opioid was revealed to exist in a mixture of stereoisomers in biological systems.[10]
^Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, Watanabe K (March 2004). "Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa". Life Sciences. 74 (17): 2143–2155. doi:10.1016/j.lfs.2003.09.054. PMID14969718.
^Ponglux D, Wongseripipatana S, Takayama H, Kikuchi M, Kurihara M, Kitajima M, et al. (December 1994). "A New Indole Alkaloid, 7 alpha-Hydroxy-7H-mitragynine, from Mitragyna speciosa in Thailand". Planta Medica. 60 (6): 580–581. doi:10.1055/s-2006-959578. PMID17236085. S2CID260252538.
^Kruegel AC, Grundmann O (May 2018). "The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse". Neuropharmacology. 134 (Pt A): 108–120. doi:10.1016/j.neuropharm.2017.08.026. PMID28830758. S2CID24009429.
^ abcTakayama H, Ishikawa H, Kurihara M, Kitajima M, Aimi N, Ponglux D, et al. (April 2002). "Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands". Journal of Medicinal Chemistry. 45 (9): 1949–1956. doi:10.1021/jm010576e. PMID11960505.