In this article, we will address the topic of Flattening from different perspectives with the aim of delving into its importance and relevance today. Flattening is a topic that has aroused growing interest in various sectors and a detailed analysis can shed light on its many facets. Throughout the next few lines, we will explore the different aspects of Flattening, presenting different opinions and approaches that will allow the reader to fully understand the complexity and significance of this topic. Through a multidisciplinary approach, we will delve into the consequences and challenges posed by Flattening, thus offering a comprehensive vision that will contribute to the knowledge and understanding of this phenomenon.
Measure of compression between circle to ellipse or sphere to an ellipsoid of revolution
A circle of radius a compressed to an ellipse.A sphere of radius a compressed to an oblate ellipsoid of revolution.
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is
The compression factor is in each case; for the ellipse, this is also its aspect ratio.
Definitions
There are three variants: the flattening [1] sometimes called the first flattening,[2] as well as two other "flattenings" and each sometimes called the second flattening,[3] sometimes only given a symbol,[4] or sometimes called the second flattening and third flattening, respectively.[5]
In the following, is the larger dimension (e.g. semimajor axis), whereas is the smaller (semiminor axis). All flattenings are zero for a circle (a = b).
^For example, is called the second flattening in: Taff, Laurence G. (1980). An Astronomical Glossary (Technical report). MIT Lincoln Lab. p. 84. However, is called the second flattening in: Hooijberg, Maarten (1997). Practical Geodesy: Using Computers. Springer. p. 41. doi:10.1007/978-3-642-60584-0_3.
^F. W. Bessel, 1825, Uber die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen, Astron.Nachr., 4(86), 241–254, doi:10.1002/asna.201011352, translated into English by C. F. F. Karney and R. E. Deakin as The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), E-print arXiv:0908.1824, Bibcode:1825AN......4..241B