In today's world, Macrophage migration inhibitory factor, whether as a topic of debate, as a relevant character or as an emblematic date, has acquired significant importance in various areas. Whether in politics, culture, science or everyday life, Macrophage migration inhibitory factor has positioned itself as a key element that sets the tone for our actions and decisions. In this article, we will analyze the impact and relevance of Macrophage migration inhibitory factor in different contexts, as well as its influence on our society. Since its appearance, Macrophage migration inhibitory factor has aroused notable interest and its presence continues to generate debate and reflection today.
Macrophage migration inhibitory factor (MIF), also known as glycosylation-inhibiting factor (GIF), L-dopachrome isomerase, or phenylpyruvate tautomerase is a protein that in humans is encoded by the MIFgene.[5][6] MIF is an important regulator of innate immunity.[7] The MIF protein superfamily also includes a second member with functionally related properties, the D-dopachrome tautomerase (D-DT).[8]CD74 is a surface receptor for MIF.[9]
Bacterial antigens stimulate white blood cells to release MIF into the blood stream.[10] The circulating MIF binds to CD74 on other immune cells to trigger an acute immune response. Hence, MIF is classified as an inflammatory cytokine. Furthermore, glucocorticoids also stimulate white blood cells to release MIF and hence MIF partially counteracts the inhibitory effects that glucocorticoids have on the immune system. Finally trauma activates the anterior pituitary gland to release MIF.[11]
Structure
Macrophage migration inhibitory factor assembles into a trimer composed of three identical subunits. Each of these monomers contain two antiparallel alpha helices and a four-stranded beta sheet. The monomers surround a central channel with 3-fold rotational symmetry.[12][13]
Response to injury
Cytokines play an important role in promoting wound healing and tissue repair. Cell injury results in MIF release which then interacts with CD74. MIF-CD74 signaling activates pro-survival and proliferative pathways that protects the host during injury.[14]
Enzymatic activity
MIF contains two motifs with catalytic activity. The first is a 27 amino acid motif located at the N-terminus functions as a phenylpyruvate tautomerase that can catalyze the conversion of 2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome) into 5,6-dihydroxyindole-2-carboxylic acid (DHICA).[15][16] MIF also contains a Cys-Ala-Leu-Cys catalytic site between residues 57 and 60 that appears to function as a disulfidereductase.[17]
MIF is a potential drug target for sepsis, rheumatoid arthritis, and cancer.[40][41]
Parasite-produced MIF homologs
Parasite-Produced MIF Cytokine in Immune Evasion, Invasion, and Pathogenesis
Multiple protozoan parasites produce homologs MIF that have similar inflammatory functions to human MIF, and play a role in their pathogenesis, invasion and immune evasion.[42][43] A preclinical study showed that blocking parasite MIF improves outcome in severe protozoan infections.[44] Examples of protozoans with MIF homologs that have been reported:
^Kozak CA, Adamson MC, Buckler CE, Segovia L, Paralkar V, Wistow G (June 1995). "Genomic cloning of mouse MIF (macrophage inhibitory factor) and genetic mapping of the human and mouse expressed gene and nine mouse pseudogenes". Genomics. 27 (3): 405–11. doi:10.1006/geno.1995.1070. PMID7558020.
^Al-Abed Y, VanPatten S (January 2011). "MIF as a disease target: ISO-1 as a proof-of-concept therapeutic". Future Medicinal Chemistry. 3 (1): 45–63. doi:10.4155/fmc.10.281. PMID21428825.
^Shan ZX, Lin QX, Deng CY, Tan HH, Kuang SJ, Xiao DZ, et al. (December 2009). "". Nan Fang Yi Ke da Xue Xue Bao = Journal of Southern Medical University (in Chinese). 29 (12): 2383–6, 2390. PMID20034881.
^Wang F, Shen X, Guo X, Peng Y, Liu Y, Xu S, Yang J (February 2010). "Spinal macrophage migration inhibitory factor contributes to the pathogenesis of inflammatory hyperalgesia in rats". Pain. 148 (2): 275–83. doi:10.1016/j.pain.2009.11.011. PMID20005040. S2CID38141283.
^Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A, Flieger O, et al. (November 2000). "Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1". Nature. 408 (6809): 211–6. Bibcode:2000Natur.408..211K. doi:10.1038/35041591. PMID11089976. S2CID205010648.
^Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J (April 2002). "Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease". Microbes and Infection. 4 (4): 449–60. doi:10.1016/S1286-4579(02)01560-5. PMID11932196.
^Bloom J, Sun S, Al-Abed Y (December 2016). "MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development". Expert Opinion on Therapeutic Targets. 20 (12): 1463–1475. doi:10.1080/14728222.2016.1251582. PMID27762152. S2CID36752674.