Nowadays, Monocalcium phosphate is a topic of great importance that generates great interest in society. Since its origins, Monocalcium phosphate has been the subject of study and debate, attracting the attention of specialists, researchers and people interested in understanding its implications and repercussions. As time progresses, Monocalcium phosphate has been evolving and adapting to changes in the environment, always remaining present on the public agenda. In this article, we will explore different perspectives and approaches related to Monocalcium phosphate, analyzing its impact on different aspects of everyday life.
Names | |
---|---|
IUPAC name
Calcium bis(dihydrogen phosphate)
| |
Other names
Acid calcium phosphate
Calcium acid phosphate Calcium diorthophosphate Calcium biphosphate Calcium superphosphate Monobasic calcium phosphate Monocalcium orthophosphate Phosphoric acid, calcium salt (2:1) | |
Identifiers | |
| |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.028.943 |
E number | E341(i) (antioxidants, ...) |
PubChem CID
|
|
UNII |
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
CaH4P2O8 | |
Molar mass | 234.05 g/mol |
Appearance | White powder |
Density | 2.220 g/cm3 |
Melting point | 109 °C (228 °F; 382 K) |
Boiling point | 203 °C (397 °F; 476 K) (decomposes) |
2 g/100 mL | |
Refractive index (nD)
|
1.5176 |
Structure | |
Triclinic | |
Hazards | |
NFPA 704 (fire diamond) | |
Flash point | Non-flammable |
Related compounds | |
Other anions
|
Calcium pyrophosphate |
Other cations
|
Magnesium phosphate Dicalcium phosphate Tricalcium phosphate Strontium phosphate |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
|
Monocalcium phosphate is an inorganic compound with the chemical formula Ca(H2PO4)2 ("AMCP" or "CMP-A" for anhydrous monocalcium phosphate). It is commonly found as the monohydrate ("MCP" or "MCP-M"), Ca(H2PO4)2·H2O. Both salts are colourless solids. They are used mainly as superphosphate fertilizers and are also popular leavening agents.[1]
Material of relatively high purity, as required for baking, is produced by treating calcium hydroxide with phosphoric acid:
Samples of Ca(H2PO4)2 tend to convert to dicalcium phosphate:
Superphosphate fertilizers are produced by treatment of "phosphate rock" with acids ("acidulation"). Using phosphoric acid, fluorapatite is converted to Ca(H2PO4)2:
This solid is called triple superphosphate. Several million tons are produced annually for use as fertilizers. Using sulfuric acid, fluorapatite is converted to a mixture of Ca(H2PO4)2 and CaSO4. This solid is called single superphosphate.
Residual HF typically reacts with silicate minerals co-mingled with the phosphate ores to produce hexafluorosilicic acid (H2SiF6). The majority of the hexafluorosilicic acid is converted to aluminium fluoride and cryolite for the processing of aluminium.[1] These materials are central to the conversion of aluminium ore into aluminium metal.
When sulfuric acid is used, the product contains phosphogypsum (CaSO4·2H2O) and is called single superphosphate. [2]
Calcium dihydrogen phosphate is used in the food industry as a leavening agent, i.e., to cause baked goods to rise. Because it is acidic, when combined with an alkali carbonate ingredient, commonly sodium bicarbonate (baking soda) or potassium bicarbonate, it reacts to produce carbon dioxide and a salt. Outward pressure of the carbon dioxide gas causes the rising effect. When combined in a ready-made baking powder, the acid and alkali ingredients are included in the right proportions such that they will exactly neutralize each other and not significantly affect the overall pH of the product. AMCP and MCP are fast acting, releasing most carbon dioxide within minutes of mixing. It is popularly used in pancake mixes. In double-acting baking powders, MCP is often combined with the slow-acting acid sodium acid pyrophosphate (SAPP).[3]