In today's world, Calcium phosphate is a topic that has become increasingly relevant and interesting. With the advancement of technology and globalization, Calcium phosphate has become a meeting point for society and its various manifestations. Throughout history, Calcium phosphate has been the subject of debate, study and controversy, generating a wide range of opinions and points of view. Whether from a cultural, social, political or economic perspective, Calcium phosphate has left a significant mark on humanity, arousing both passions and criticism. In this article, we will explore the different aspects and dimensions of Calcium phosphate, its impact today and its relevance in everyday life.
Hydroxyapatite crystal
| |
Identifiers | |
---|---|
EC Number |
|
E number | E341 (antioxidants, ...) |
PubChem CID
|
|
UNII | |
| |
Properties | |
Ca3(PO4)2 | |
Molar mass | 310.18 g/mol |
Appearance | White Solid |
Odor | Odorless |
Density | 3.14 g/cu cm[1] |
Melting point | 1,670 °C (3,040 °F; 1,940 K)[1] |
Practically insoluble with water | |
Solubility in Ethanol | Insoluble with ethanol (also acetic acid) |
Hazards | |
GHS labelling: | |
Warning | |
H315, H319, H335 | |
P101, P102, P103, P261, P264, P270, P271, P280, P302+P352, P304+P340, P305+P351+P338 | |
NFPA 704 (fire diamond) | |
Flash point | Non-flammable |
Safety data sheet (SDS) | fishersci.com |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
|
The term calcium phosphate refers to a family of materials and minerals containing calcium ions (Ca2+) together with inorganic phosphate anions. Some so-called calcium phosphates contain oxide and hydroxide as well. Calcium phosphates are white solids of nutritional value[2] and are found in many living organisms, e.g., bone mineral and tooth enamel.[3] In milk, it exists in a colloidal form in micelles bound to casein protein with magnesium, zinc, and citrate–collectively referred to as colloidal calcium phosphate (CCP).[4] Various calcium phosphate minerals, which often are not white owing to impurities, are used in the production of phosphoric acid and fertilizers. Overuse of certain forms of calcium phosphate can lead to nutrient-containing surface runoff and subsequent adverse effects upon receiving waters such as algal blooms and eutrophication (over-enrichment with nutrients and minerals).[5]
These materials contain Ca2+ combined with PO3−
4, HPO2−
4, or H
2PO−
4:
These materials contain Ca2+ combined with the polyphosphates, such as P
2O4−
7 and triphosphate P
3O5−
10:
These materials contain other anions in addition to phosphate:
Calcium phosphate stones account for approximately 15% of kidney stone disease. Calcium phosphate stones tend to grow in alkaline urine, especially when Proteus bacteria are present. It is the most common type in pregnant women.[6]
Calcium phosphate is the usual constitution of microcalcifications of the breast, particularly dystrophic calcifications. Microcalcifications as can be seen on mammography can be an early sign of breast cancer. Based on morphology, it is possible to classify by radiography how likely microcalcifications are to indicate cancer.[7]